Unsteady Lift of a Flapped Airfoil by Indicial Concepts

J. Gordon Leishman*
University of Maryland, College Park, Maryland 20742

A practical method is described for computing the unsteady lift on an airfoil due to arbitrary motion of a trailing-edge flap. The result for the incompressible case is obtained in state-space form by means of Duhamel superposition and employing an improved exponential approximation to Wagner's indicial lift function. For subsonic compressible flow, the indicial lift at small values of time due to impulsive trailing-edge flap deflection is obtained from linear theory in conjunction with the aerodynamic reciprocal theorems. These results are used with experimental results for the oscillating case to obtain complete exponential approximations for the indicial response due to impulsive flap deflection. The final result for the unsteady lift due to an arbitrary flap motion in subsonic flow is obtained in state-space form. Numerical results and comparisons with experimental data are charm.

Nomenclature

A_i	=	coefficients of indicial functions
a	==	pitch axis location, semichords
a_{s}	=	sonic velocity, m/s
\vec{b}	=	semichord, $c/2$, m
b_i	=	exponents of indicial functions
$\dot{C}(k)$	=	Theodorsen's function
C_{i}	=	lift force coefficient
C_L C_p	=	pressure coefficient
c	=	airfoil chord, m
e	$\stackrel{\text{\tiny L}}{=}$	flap hinge location, semichords
F_1, F_4, F_{10}, F_{11}	=	geometric constants for flap
h	=	plunge displacement (positive down), m
K	=	noncirculatory time constant
k	=	reduced frequency, $\omega c/2V$
M	=	Mach number
q	=	nondimensional pitch rate, $\alpha c/V$
$\frac{q}{S}$	=	distance traveled in semichords, 2Vt/c
T_i	=	basic noncirculatory time constant, c/a_s
t	=	time, s
t_1	=	nondimensional time
V	=	freestream velocity, m/s
W_g	=	gust upwash velocity, m/s
x	=	airfoil chord axis (origin at
		midchord), m
z_i	=	state variable
α	=	angle of attack, rad
β	=	compressibility factor, $\sqrt{1 - M^2}$
Δ	=	incremental quantity
δ		flap deflection angle, rad
ρ		fluid density, kg/m ³
$oldsymbol{\phi}$.	=	indicial response function
$oldsymbol{\phi}_W$		Wagner function
ψ	=	Küssner function
ω	=	frequency, rad/s
Subscripts		
q		refers to airfoil pitch rate
α		refers to angle of attack
$\stackrel{oldsymbol{\delta}}{\dot{\delta}}$	=	refers to flap deflection angle
Ò	===	refers to flap deflection rate

Received Aug. 17, 1992; revision received Nov. 21, 1992; accepted for publication Nov. 21, 1992. Copyright © 1992 by J. G. Leishman. Published by the American Institute of Aeronautics and Astronautics, Inc., with permission.

Superscripts		
c	=	refers to circulatory component
f	=	refers to flap component
i		refers to noncirculatory component

Introduction

THERE have been several practical applications of a I trailing-edge flap for gust alleviation or to help suppress flutter on fixed-wing aircraft.1 For helicopter rotors the use of trailing-edge flaps on the blades has found use only for collective and 1/revolution cyclic pitch control. Probably the earliest recorded successful example of a flap on a rotor was on the coaxial helicopter made by d'Ascanio of Italy in 1930.2 A more modern example is the Kaman servo-flap, which is used for 1/revolution cyclic. With the advent of smart materials/structures and high bandwidth active control technologies, it is now becoming increasingly feasible to use compliant airfoil surfaces or trailing-edge mounted flaps on rotor blades as a means of higher harmonic cyclic, or even individual blade control (IBC). Coupled with real-time adaptive feedback strategies, actively controlling the blade lift distribution offers tremendous possibilities for improving helicopter rotor performance, as well as reducing blade loads and vibrations.3 Potentially, there are several other benefits to be gained by actively optimizing blade lift. These include improved forward flight performance by the active suppression of blade stall, reducing advancing blade transonic drag, reduced rotor noise by alleviating the intensity of blade/wake or blade/tip vortex interaction phenomena, and possibly improving the rotorcraft flight dynamics and maneuverability.

A practical concern of IBC is the availability of suitable low-mass, high-force actuators that can be mounted inside the rotating blade and used to drive the compliant aerodynamic surfaces at relatively high frequencies. Initial results from smart structures and materials research at the University of Maryland has shown that IBC is possible on a Froude-scale helicopter rotor by means of a small outboard trailing-edge flap controlled by piezoceramic actuators. Some objectives of this program are to use a smart-structures based IBC concept to explore methods of reducing rotor vibration, optimize rotor performance, and to improve the acoustic signature, especially in descents where strong interactions with discrete tip vortices produce a form of impulsive rotor noise known as blade slap.

Parallel theoretical studies of these problems using advanced rotor models require the use of a suitably formulated

^{*}Associate Professor, Department of Aerospace Engineering. Member AIAA.

time-domain aerodynamic theory for the flap. An unsteady aerodynamic theory is required for the problem, firstly because the flap actuation frequency can be several times the rotor rotational frequency, and secondly, because high resolution predictions of rotor acoustics need be made. In addition, since the local effective reduced frequencies based on flap motion often exceed unity on an IBC rotor, incompressible assumptions are no longer adequate and compressible flow must be intrinsically assumed.

The objective of this article is to describe the development of an unsteady aerodynamic theory for the effects of the flap based on indicial function concepts, and in a computational form suitable for rotor loads and aeroelasticity applications. Results for the airfoil case are used in conjunction with the reverse flow theorems to formulate a solution for the flap. Some illustrative results are presented which show the general significance of unsteady effects associated with time-varying, trailing-edge flap displacements in a simulated rotor environment.

Methodology

The problem described herein is formulated in the spirit of classical unsteady airfoil theory. The assumptions are that the unsteady problem is governed by the linearized partial differential equation and linearized boundary conditions. The two-dimensional solution is assumed to be representative of the environment encountered by a rotor blade element; the effects of the trailed wake are accounted for by means of an additional inflow angle. Also, it will be assumed that the freestream flow velocity is constant, although the results can be extended to time-varying freestreams, and the procedures are outlined for incompressible flow in Ref. 5.

For conciseness in this article, only the flap lift response will be considered, although results for the pitching moment have also been derived. As a precursor, the solution for the unsteady lift in the time-domain due to arbitrary flap motion in incompressible flow is summarized, followed by an extension to the subsonic compressible case.

Incompressible Flow

The unsteady lift on an airfoil with a harmonically oscillating flap in incompressible flow has been examined by Küssner and Schwarz⁶ and others, but the most well known solution is that due to Theodorsen.^{7,8} The lift on a thin rigid airfoil undergoing oscillatory forcing (Fig. 1) can be written in coefficient form as

$$C_{L} = \frac{\pi b}{V^{2}} \left[\ddot{h} + V \dot{\alpha} - b a \ddot{\alpha} \right]$$

$$+ 2\pi C(k) \left[\frac{\dot{h}}{V} + \alpha + b \left(\frac{1}{2} - a \right) \frac{\dot{\alpha}}{V} \right]$$
(1)

The first group of terms are the noncirculatory or apparent mass components and they account for the inertia of the fluid. The second group of terms are the circulatory components, where C(k) accounts for the influence of the shed wake vorticity.

With the addition of a trailing-edge flap with hinge at a distance eb from the midchord, there are additional airloads

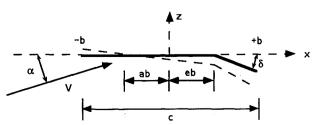


Fig. 1 Nomenclature for airfoil and flap.

that depend on δ and its time rate-of-change δ . The additional lift coefficient is

$$C_L^f = \frac{b}{V^2} \left[-V F_4 \dot{\delta} - b F_1 \ddot{\delta} \right] + 2\pi C(k) \left[\frac{F_{10} \delta}{\pi} + \frac{b F_{11} \dot{\delta}}{2\pi V} \right]$$
 (2)

where again, the first and second group of terms are the noncirculatory and circulatory loads, respectively. The coefficients F_1 , F_4 , F_{10} , and F_{11} are all geometric terms, which depend only on the size of the flap relative to the airfoil chord, and for a coordinate system located at midchord can be expressed as

$$F_{1} = e \cos^{-1}e - \frac{1}{3}(2 + e^{2})\sqrt{1 - e^{2}}$$

$$F_{4} = e\sqrt{1 - e^{2}} - \cos^{-1}e$$

$$F_{10} = \sqrt{1 - e^{2}} + \cos^{-1}e$$

$$F_{11} = (1 - 2e)\cos^{-1}e + (2 - e)\sqrt{1 - e^{2}}$$
(3)

Finally, the lift can be written

$$C_L(t) = \frac{\pi b}{V^2} (\ddot{h} + V\dot{\alpha} - ba\ddot{\alpha})$$

$$+ \frac{b}{V^2} (-VF_4\dot{\delta} - bF_1\ddot{\delta}) + 2\pi C(k)(\alpha_{qs} + \delta_{qs})$$
(4)

where α_{qs} is the quasisteady airfoil angle of attack, and δ_{qs} is the quasisteady angle of attack due to the imposed flap deflection, i.e.

$$\alpha_{qs} = \left[\frac{\dot{h}}{V} + \alpha + b\left(\frac{1}{2} - \alpha\right)\frac{\dot{\alpha}}{V}\right]$$

$$\delta_{qs} = \left[\frac{F_{10}\delta}{\pi} + \frac{bF_{11}\dot{\delta}}{2\pi V}\right] = \left[\frac{F_{10}\delta}{\pi} + \frac{F_{11}\dot{\delta}c}{4\pi V}\right]$$
(5)

For the case of arbitrary airfoil motion and/or arbitrary flap deflection, the result for the unsteady lift can be obtained by means of Duhamel's superposition integral with the Wagner indicial (step) response, and can be written as

$$C_{L}(t) = \frac{\pi b}{V^{2}} (\ddot{h} + V\dot{\alpha} - ba\ddot{\alpha})$$

$$+ \frac{b}{V} (-VF_{4}\dot{\delta} - bF_{1}\ddot{\delta}) + 2\pi \left[\alpha_{qs}(0)\phi_{W}(S) + \int_{0}^{S} \frac{d\alpha_{qs}}{d\sigma} \phi_{W}(S - \sigma) d\sigma + \delta_{qs}(0)\phi_{W}(S) + \int_{0}^{S} \frac{d\delta_{qs}}{d\sigma} \phi_{W}(S - \sigma) d\sigma \right]$$

$$(6)$$

where S(=Vt/b) is the aerodynamic time based on semichord lengths of airfoil travel. The Wagner function accounts for the influence of the shed wake, and is known exactly in terms of Bessel functions.^{9–11} In fact, the Theodorsen function and the Wagner function are related by means of a Fourier transform pair.

For practical evaluation of the Duhamel integral, the Wagner function can be expressed as an exponential approximation. Consider a second-order indicial response approximation, i.e.

$$\phi_w(S) = 1 - A_1 \exp(-b_1 S) - A_2 \exp(-b_2 S)$$
 (7)

where $A_1 + A_2 = 0.5$. A nonlinear least squares fit to the Wagner result using a constrained optimization algorithm gives

 $A_1 = 0.2048$, $A_2 = 0.2952$, $b_1 = 0.0557$, and $b_2 = 0.333$, with an error of less than 0.1% of the exact solution. Other fits to the Wagner function are given in Refs. 12-15.

From this form, the state-space equivalent of the Duhamel integral

$$\alpha_{qs}(0)\phi_W(S) + \int_0^S \frac{d\alpha_{qs}}{d\sigma} \phi_W(S - \sigma) d\sigma$$
 (8)

can be written in controllable canonical form as

$$\begin{bmatrix} \dot{z}_1(t) \\ \dot{z}_2(t) \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -b_1b_2(V/b)^2 & -(b_1 + b_2)(V/b) \end{bmatrix} \times \begin{bmatrix} z_1(t) \\ z_2(t) \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} \alpha_{qs}(t)$$
 (9)

and the output equation for the circulatory part of the lift coefficient due to arbitrary airfoil motion is

$$C_{L_{\alpha}}^{c}(t) = 2\pi [(b_{1}b_{2}/2)(V/b)^{2} (A_{1}b_{1} + A_{2}b_{2})(V/b)]$$

$$\times \begin{bmatrix} z_{1}(t) \\ z_{2}(t) \end{bmatrix} + \pi\alpha_{qs}(t)$$
(10)

See also the work of Edwards et al. ¹⁶ Note that the second term on the right side arises because of the nonzero initial conditions of the Wagner function, i.e., $A_1 + A_2 = 0.5$. These first-order differential equations are in the form $\dot{z} = Az + Bu$ with the output equations y = Cz + Du, where $\dot{z} = dz/dt$; $u = u_i$, $i = 1, 2, \ldots, m$ are forcing function(s), and the $y = y_i$, $i = 1, 2, \ldots, p$ are the airloads. $z = z_i$, $i = 1, 2, \ldots, n$ are the states of the system. The states contain all the hereditary information about the aerodynamic system.

Similarly, considering an arbitrary trailing-edge flap motion, the state-space equivalent of the Duhamel integral

$$\delta_{qs}(0)\phi_W(S) + \int_0^S \frac{d\delta_{qs}}{d^{\sigma}} \phi_W(S - \sigma) d\sigma \qquad (11)$$

can be written as

$$\begin{bmatrix} \dot{z}_3(t) \\ \dot{z}_4(t) \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -b_1b_2(V/b)^2 & -(b_1 + b_2)(V/b) \end{bmatrix} \times \begin{bmatrix} z_3(t) \\ z_4(t) \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} \delta_{qs}(t)$$
 (12)

and the output equation for the circulatory part of the lift coefficient due to arbitrary flap motion is

$$C_{L_{\delta}}(t) = 2\pi [(b_1 b_2 / 2)(V/c)^2 (A_1 b_1 + A_2 b_2)(V/b)]$$

$$\times \begin{bmatrix} z_3(t) \\ z_4(t) \end{bmatrix} + \pi \delta_{qs}(t)$$
(13)

Note that the A and C matrices here are the same as for the angle of attack terms. This is because the circulatory lift lag is an intrinsic function of the fluid and does not depend on the airfoil boundary conditions.

The noncirculatory parts of the lift, which for an incompressible flow are proportional to the instantaneous displacements and involve no states, can be written as

$$C_{L}(t) = \frac{\pi b}{V} \left(\ddot{h} + V \dot{\alpha} - b a \ddot{\alpha} \right) + \frac{b}{V^{2}} \left(-V F_{4} \dot{\delta} - b F_{1} \ddot{\delta} \right)$$
(14)

Therefore, the total lift due to independent arbitrary airfoil motion and flap deflection can be written as

$$C_L^c(t) = C_{L_s}^c(t) + C_{L_s}^c(t) + C_L^i(t)$$
 (15)

In addition to the foregoing, the airfoil may operate in an arbitrary gust field, and it is important to consider this part of the lift response. Denoting the downwash velocity by w_g , the unsteady lift in the time domain can be found by using Duhamel superposition with the Küssner gust entry function $\psi(S)$, i.e.

$$C_L^g(t) = 2\pi \left[\frac{w_g(0)}{V} \psi(S) + \frac{1}{V} \int_0^S \frac{\mathrm{d}w_g}{\mathrm{d}\sigma} \psi(S - \sigma) \,\mathrm{d}\sigma \right] \quad (16)$$

Like the Wagner function, the Küssner gust entry function is also known exactly in terms of Bessel functions. ¹¹ However, for practical calculations it is convenient to approximate the Küssner function using

$$\psi(S) = 1 - A_3 \exp(-b_3 S) - A_4 \exp(-b_4 S)$$
 (17)

where $A_3 + A_4 = 1$. A nonlinear least squares fit to Küssners' exact result can be made using a constrained optimization giving $A_3 = 0.5792$, $A_4 = 0.4208$, $b_3 = 0.1393$, and $b_4 = 1.802$, with an error of less than 0.1%. In state-space form, Eq. (16) can be written as

$$\begin{bmatrix} \dot{z}_{5}(t) \\ \dot{z}_{6}(t) \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -b_{3}b_{4}(V/b)^{2} & -(b_{3} + b_{4})(V/b) \end{bmatrix} \times \begin{bmatrix} z_{5}(t) \\ z_{6}(t) \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} \frac{w_{g}(t)}{V}$$
(18)

and the output equation for the total lift coefficient due to the gust field is

$$C_{\perp}^{g}(t) = 2\pi \left[(b_{3}b_{4})(V/b)^{2} (A_{3}b_{3} + A_{4}b_{4})(V/b) \right] \begin{bmatrix} z_{5}(t) \\ z_{6}(t) \end{bmatrix}$$
(19)

The complete aerodynamic system for the airfoil in an incompressible flow, therefore, can be represented by six aerodynamic states. Although it is convenient for the present exposition to separate out the circulatory lift due to airfoil motion from that due to the flap motion, in a practical application their net effects can be combined so that only two states are required for the circulatory loads instead of four. The resulting four state equations describing the lift for arbitrary airfoil motion and flap motion (two states), and the gust field (two states) can be integrated in time using any standard ordinary differential equation (ODE) solver. Also, note that on a thin airfoil in an incompressible flow the circulatory lift always acts at the one-fourth-chord point, and there are no additional states required for the moment. In the real case, however, the aerodynamic center is not located at the one-fourth-chord so that a circulatory moment will be created.

Compressible Flow

There are no equivalent exact results analogous to Theodorsen's theory for the unsteady lift due to airfoil or flap motion in subsonic compressible flow. For the subsonic oscillatory case, the flow is governed by the Poisson integral equation for which there is no known exact analytical solution. However, some numerical solutions for an oscillating flap have been computed by Turner and Rebinowitz.¹⁷

In a compressible flow both the circulatory and the noncirculatory loads have a hereditary effect, and the latter are no longer proportional to the instantaneous airfoil and flap displacements as in the incompressible case. A solution starting from the indicial response is desired for this flap problem since it has been shown that this permits a generalization to arbitrary forcing by means of Duhamel superposition. However, while the initial (S=0) and final $(S=\infty)$ values of the indicial response are known exactly in subsonic flow, the intermediate behavior is known exactly only for very limited values of time. Also, it is known that no simple compressibility scaling applies to the incompressible indicial result, i.e., it is not possible to scale the Wagner indicial result as a function of Mach number.

The initial airloading on an airfoil operating in a compressible flow in response to a step change in the boundary conditions is associated with the acoustic wave system created by the initial perturbation. The airloading at S=0 can be computed directly using piston theory. For indicial flap motion about a hinge point located e semichords downstream of midchord

$$\Delta C_{L_{\delta}}(S=0,M) = \frac{2(1-e)}{M} \Delta \delta$$

$$\Delta C_{L_{\delta}}(S=0,M) = \frac{(1-e)}{2M} \frac{\Delta \dot{\delta}c}{V}$$
(20)

Note that these results are valid for any M, but only at the instant in time when the perturbation is applied. The final values of the indicial response are given by the usual linearized steady-state (circulatory) theory, so that for indicial flap motion

$$\Delta C_{L_{\delta}}(S = \infty, M) = \frac{2F_{10}}{\beta} \Delta \delta$$

$$\Delta C_{L_{\delta}}(S = \infty, M) = \frac{F_{11}}{2\beta} \frac{\Delta \dot{\delta} c}{V}$$
(21)

The problem now is to define the intermediate behavior between S=0 and $S=\infty$. The indicial lift coefficients due to impulsive flap deflection (about some hinge axis at e) can be written as

$$\Delta C_{L_{\delta}}(S, M, e) = \left[\frac{2(1-e)}{M} \phi_{\delta}^{i}(S, M, e) + \frac{2F_{10}}{\beta} \phi_{\delta}^{c}(S, M, e)\right] \Delta \delta$$
(22)

$$\Delta C_{L_{\delta}}(S, M, e) = \left[\frac{(1 - e)^2}{2M} \phi_{\delta}(S, M, e) + \frac{F_{11}}{2\beta} \phi_{\delta}(S, M, e)\right] \frac{\Delta \delta c}{V}$$
(23)

where the indicial response functions ϕ_{δ}^c , ϕ_{δ}^c , ϕ_{δ}^i , and ϕ_{δ}^i all represent the intermediate behavior of the respective indicial airloads between S=0 and $S=\infty$.

The circulatory part of the indicial response accounts for the influence of the shed wake vorticity. For a subsonic flow, it can be shown that the circulatory part of the indicial response due to changes in airfoil angle of attack, ϕ_{α}^{c} , can be approximated by the exponential function

$$\phi_{\alpha}^{c}(S, M) = 1 - \sum_{i=1}^{N} A_{i} \exp(-b_{i}\beta^{2}S)$$
 (24)

The time constants of this function scale with β^2 , which has been previously justified from experiments, ^{18,19} and is simply

a manifestation of the fact that the aerodynamic lag effects due to the shed wake become larger with increasing Mach number. The coefficients A_i and b_i can be derived from the aerodynamic response due to harmonic motion.

Mazelsky^{20,21} derived exponential forms of the indicial response using theoretical results for the lift on an oscillating airfoil in subsonic compressible flow. Drischler²² applied the same approach to find exponential approximations for the indicial lift obtained during the penetration of a sharp-edge gust, which is also known to be proportional to the circulation obtained during indicial airfoil motion. More recently, the author²³ has obtained an optimized N=2 exponential approximation for ϕ_c^{α} in the form of Eq. (24), using various experimental measurements in the frequency domain at Mach numbers up to 0.8.

Note further, that analogous to the incompressible case in linearized subsonic flow the circulatory lift lag is an intrinsic function of the fluid and does not depend on the airfoil boundary conditions. This result was first examined in some detail by Mazelsky^{21,24} who used numerical results for the unsteady lift and moment response in the frequency domain to extract the separate indicial responses due to angle of attack and pitch rate by means of reciprocal relationships. Therefore, it can be shown that

$$\phi_{\alpha}^{c}(S, M) = \phi_{q}^{c}(S, M, a) = \phi_{\delta}^{c}(S, M, e) = \phi_{\delta}^{c}(S, M, e)$$
(25)

During the time between the initial noncirculatory dominated loading until the final circulatory dominated loading is obtained, the flow adjustments are very complex and involve the creation of circulation as well as the propagation and reflection of wave-like pressure disturbances. Mazelsky²⁵ showed that the noncirculatory lift in subsonic compressible flow decays very rapidly from the initial piston theory values. It has been shown previously in Refs. 19 and 23, that for practical calculations the noncirculatory lift decay for indicial airfoil motion can be closely approximated by exponential functions. Similarly, for indicial flap motion, exponential decays can be assumed giving

$$\Delta C_{L_{\delta}}^{i}(S, M, e) = \frac{2(1 - e)}{M} \phi_{\delta}^{i}(S, M, e) \Delta \delta$$

$$= \frac{2(1 - e)}{M} \exp\left(\frac{-S}{T_{\delta}^{i}(M, e)}\right) \Delta \delta$$
(26)

$$\Delta C_{L_{\delta}}^{i}(S, M, e) = \frac{(1 - e)^{2}}{2M} \phi_{\delta}^{i}(S, M, e) \frac{\Delta \dot{\delta} c}{V}$$

$$= \frac{(1 - e)^{2}}{2M} \exp\left(\frac{-S}{T_{\delta}^{i}(M, e)}\right) \frac{\Delta \dot{\delta} c}{V}$$
(27)

where T_{δ}' and $T_{\delta}'(M)$ are Mach number dependent decay rates or time constants. A final problem then, is to obtain values for these noncirculatory time constants. Note that their proper evaluation critically defines the behavior of the indicial responses at small values of time.

These time constants can be evaluated with the aid of exact solutions for the indicial response, which exist for limited values of time after the perturbation is applied. Lomax et al. 26 and Lomax 27 obtained theoretical results using a form of the wave-equation for the indicial responses due to step changes in airfoil angle of attack and pitch rate. The mathematical calculations are somewhat complex, and solutions can be obtained only for a short period of time after the start of the motion (less than one semichord length of airfoil travel), but this is still sufficient to define the initial behavior of the indicial response.

The exact solution for the chordwise pressure on an airfoil undergoing a unit step change in angle of attack is

$$\Delta C_{p}(x, t_{1}) = \Re \left(\frac{8}{\pi (1+M)} \sqrt{\frac{t_{1}-x}{Mt_{1}+x}} + \frac{4}{\pi M} \left\{ \cos^{-1} \left[\frac{t_{1}(1+M)-2(c-x)}{t_{1}(1-M)} \right] - \cos^{-1} \left(\frac{2x-t_{1}(1-M)}{t_{1}(1+M)} \right) \right\} \right)$$
(28)

for the period $0 \le t_1 \le c/(1 + M)$, where \Re refers to the real part, and x is measured from the leading edge. The resulting lift on the airfoil can be obtained from

$$C_L(t_1) = \int_{-Mt_1}^{c-Mt_1} \Delta C_p(x, t_1) dx$$
 (29)

and the result can be transformed to the S domain by making use of the fact that $S = 2Mt_1$.

The corresponding indicial responses due to the impulsive motion of a trailing-edge flap can be obtained using Eq. (28), with the aid of the aerodynamic reciprocity relations described by Flax²⁸ and Heaslet and Spreiter.²⁹ As long as one is interested in the total lift and moment, it appears that this approach furnishes the only rigorous way of treating the indicial flap problem exactly.

Consider first the indicial lift due to δ , which produces a uniform perturbation velocity over the flap, as shown in Fig. 2a. It can be shown by the aerodynamic reciprocal theorems that the lift in steady or indicial motion per unit angle of flap deflection is equal to the lift per unit angle of attack on the corresponding portion of a flat plate airfoil moving in the reverse direction. Consider a flapped portion of one airfoil deflected at δ , and the remainder of the airfoil is a flat plate with its surface parallel to the freestream. Let a second airfoil be a flat plate airfoil, so that

$$\alpha_1 = \begin{cases} \delta \text{ on the flap} & \alpha_2 = \text{const} \\ 0 \text{ elsewhere} \end{cases}$$
(30)

The reciprocal theorem gives

$$\frac{C_{L_1}(t_1)}{\delta} = \int_{\text{flap}} \left[\frac{\Delta C_{p_2}(x_2/c, t_1)}{\alpha_2} \right] d\left(\frac{x_2}{c}\right)$$
(31)

where ΔC_p is given by Eq. (28). It can be shown by integration that in the short time interval $0 \le S \le M(1 - e)/(1 + M)$,

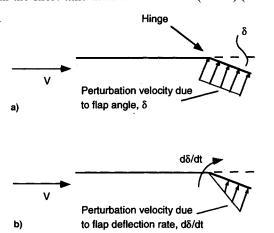


Fig. 2 Perturbation velocity due to a) flap angle and b) flap rate.

the indicial lift due to the flap deflection angle is given exactly by

$$\Delta C_{L_{\delta}}(S) = \frac{2(1-e)}{M} \left[1 - \frac{(1-M)S}{2M(1-e)} \right] \Delta \delta$$
 (32)

A similar approach can be used to find the initial behavior of the indicial response due to δ about the hinge. The local perturbation velocity due to this motion is linear, as shown in Fig. 2b. By means of the reciprocal relations, it can be shown that the lift on one airfoil due to flap rate about the hinge is equal to the integral over the airfoil of the product of the perturbation in local angle of attack induced by the flap rate motion, and the loading per unit angle of attack at the corresponding point of a second airfoil comprising a flat plate moving in the reverse direction. Therefore

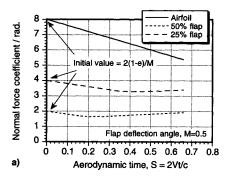
$$\frac{C_{L_1}(t_1)}{\dot{\delta}c/V} = \int_{\text{flap}} \left[\frac{\Delta C_{p_2}(x_2/c, t_1)}{\alpha_2} \right] \left[\left(\frac{1 - e}{2} \right) - \frac{x_2}{c} \right] d\left(\frac{x_2}{c} \right)$$
(33)

In the short time interval $0 \le S \le M(1 - e)/(1 + M)$, it can be shown by integration that the indicial lift on the airfoil due to flap rate varies as

$$\Delta C_{L_d}(S) = \frac{1}{2M} \left[(1 - e)^2 - \frac{(1 - M)(1 - e)S}{M} + \frac{(2 - M)S^2}{2M} \right] \frac{\Delta \delta c}{V}$$
(34)

The reciprocal theorems can also be used to obtain results for the indicial pitching moments, and the general procedure is closely analogous to that described above. Also, equivalent results can be obtained for leading-edge flap deflections.

Typical results for the indicial lift due to impulsive trailingedge flap deflection are shown in Fig. 3 for M=0.5. Recall that these loads are quite different to the incompressible result for indicial flap motion which exhibit an infinite pulse at S=0, and thereafter build progressively from one-half of their final value (c.f. Wagner function).



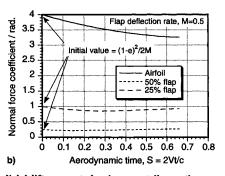


Fig. 3 Indicial lift computed using exact linear theory at M=0.5 due to a) flap deflection and b) flap rate.

From these exact results for the indicial response in subsonic flow, the time constants for the noncirculatory lift decay in Eqs. (26) and (27) can be approximated by equating the sum of the time derivatives of the assumed exponential forms of the noncirculatory and circulatory lift response at time zero (S=0) to the corresponding time derivative of the exact solutions, i.e.

$$\underbrace{\frac{dC_L}{dS}\Big|_{S=0}}_{\text{exact}} = \underbrace{\frac{dC_L^c}{dS}\Big|_{S=0}}_{\text{circ}} + \underbrace{\frac{dC_L^i}{dS}\Big|_{S=0}}_{\text{noncirc}}$$
(35)

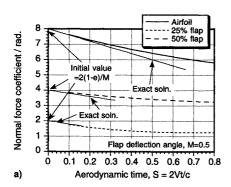
Based on this approach, which is outlined for the airfoil angle of attack and pitch rate terms in Ref. 23, the noncirculatory time constants for the flap can be expressed in terms of the coefficients of the approximating circulatory response as

$$T_{\delta}(M, e) = \left(\frac{c}{2V}\right) T_{\delta}' = (1 - e) \left[(1 - M) + F_{10}\beta^{-1}M^{2} \sum_{i=1}^{2} A_{i}b_{i} \right]^{-1} \left(\frac{c}{a_{s}}\right) = K_{\delta}(M, e)T_{i}$$

$$T_{\delta}(M, e) = \left(\frac{c}{2V}\right) T_{\delta}' = \frac{(1 - e)^{2}}{2} \left[(1 - M)(1 - e) + F_{11}\pi^{-1}\beta^{2}M^{2} \sum_{i=1}^{2} A_{i}b_{i} \right]^{-1} \left(\frac{c}{a_{s}}\right) = K_{\delta}(M, e)T_{i}$$
(37)

Note also that in the above representation, no matter what the actual values for the circulatory coefficients A_i and b_i are, the noncirculatory time constants are always adjusted to give the correct initial behavior of the total indicial lift response as given by the exact linear theory.

The results obtained from this process are shown for the indicial lift due to flap deflection and flap rate at M=0.5 in Figs. 4 and 5, respectively. In each case, the first graph shows the results at small values of time, and the second graph shows the subsequent buildup of the circulatory lift at greater values



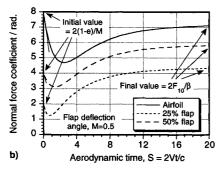
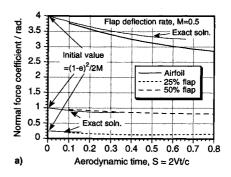


Fig. 4 Indicial lift due to flap deflection at M=0.5: a) small values of time and b) subsequent buildup of the circulatory lift at greater values of time.



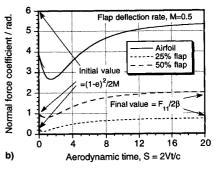


Fig. 5 Indicial lift due to flap rate at M=0.5: a) small values of time and b) subsequent buildup of the circulatory lift at greater values of time.

of time. Note the excellent agreement between the exponential approximations and the exact theory for smaller values of time. At a later time, the solutions begin to differ because of the fact that the present circulatory solution has been partially derived from experimental results, ²³ and not pure linear theory.

Consider now the lift response due to arbitrary flap deflection in subsonic compressible flow. Since the circulatory part of the indicial response does not depend on the mode of forcing, the flap deflection angle and the pitch rate about the hinge can be combined into a single term, i.e., δ_{qs} , as shown previously for the incompressible case. The state-space equivalent of

$$\delta_{qs}(0)\phi_{\delta}^{c}(S, M) + \int_{0}^{S} \frac{d\delta_{qs}}{d\sigma} \phi_{\delta}^{c}(S - \sigma, M) d\sigma \qquad (38)$$

can be written in controllable canonical form as

$$\begin{bmatrix} \dot{z}_1(t) \\ \dot{z}_2(t) \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -b_1b_2(2V/c)^2\beta^4 & -(b_1 + b_2)(2V/c)\beta^2 \end{bmatrix} \times \begin{bmatrix} z_1(t) \\ z_2(t) \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} \delta_{qs}(t)$$
(39)

with the output equation for the circulatory part of the unsteady lift due to the flap

$$C_L^c(t) = \frac{2\pi}{\beta} \left[(b_1 b_2) (2V/c)^2 \beta^4 \left(A_1 b_1 + A_2 b_2 \right) \right]$$

$$\times (2V/c) \beta^2 \left[\begin{bmatrix} z_1(t) \\ z_2(t) \end{bmatrix} \right]$$
(40)

where A_1 , b_1 , etc., are for subsonic flow as given by Eq. (24). While the other circulatory parts due to airfoil motion can also be combined into the above two state equations, as for the incompressible case, the noncirculatory lift components have a time-history effect in subsonic flow and must be con-

sidered separately. The noncirculatory part of the unsteady lift due to arbitrary flap deflection $\delta(t)$ can be written as

$$\dot{z}_{3}(t) = \delta(t) - \frac{1}{K_{\delta}T_{i}} z_{3}(t)
C_{L_{\delta}}^{i}(t) = \frac{2(1-e)}{M} \dot{z}_{3}(t)$$
(41)

Similarly, the noncirculatory lift due to flap rate about the hinge $\dot{\delta}$ can be written as

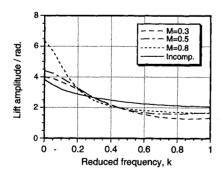
$$\dot{z}_{4}(t) = \frac{(1-e)^{2}}{2} \frac{\dot{\delta}(t)c}{V} - \frac{1}{K_{\dot{\delta}}T_{i}} z_{4}(t)
C_{L_{\dot{\delta}}}^{i}(t) = \frac{(1-e)^{2}}{4M} \frac{c}{V} \dot{z}_{4}(t)$$
(42)

The remainder of the unsteady loads due to airfoil motion and encounters with an arbitrary gust field can be obtained in state-space form following the procedures outlined in Refs. 23 and 30, and can be easily appended to the equations describing the flap.

Results and Discussion

From the state equations given above, the response to a particular harmonic motion of the flap can be derived in closed form. While the algebraic manipulation is somewhat lengthy, it can be shown that for a prescribed harmonic forcing explicit expressions can be obtained for the lift on the airfoil as a function of flap frequency. This provides an independent check of the aerodynamic approximations independently of any numerical integration scheme.

Typical results for a oscillatory flap motion are shown in Fig. 6. The flap is 25% of the airfoil chord, i.e., e = 0.5. The results are presented as the first harmonic lift amplitude and phase angle vs the flap reduced frequency for various Mach numbers, and are compared with the incompressible case. As in the case of a pure airfoil, it is clear that the effects of Mach number on the lift response are relatively large. In the limit as $k \to 0$, the lift amplitude is given by the usual linearized steady flow value and the phase angle is zero. As k increases, the lift amplitude decreases progressively in the range up to



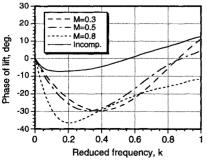


Fig. 6 Frequency response due to a harmonic flap oscillation, $\delta = \sin \omega t$, e = 0.5.

k = 1. The corresponding phase angle initially exhibits a lag, which is due to the effects of the shed wake vorticity (circulatory component of response). For values of k greater than about 0.4, the phase lag reaches a maximum, and thereafter becomes progressively less, ultimately becoming a phase lead at k = 1 at the lower Mach numbers. This result is due to the increasing influence of the noncirculatory terms at higher reduced frequencies. The increasing phase lag effects in the lift response with increasing Mach number are particularly worthy of note. Note also the differences in the phase of the response compared to the incompressible case at higher reduced frequencies, even at low freestream Mach numbers. Physically, this is because pressure perturbations propagate through the flow at the local speed of sound, and at higher flap frequencies the disturbances do not propagate sufficiently quickly relative to the flap motion for the flow to be considered as incompressible.

Figure 7 shows a comparison of the present theory with measurements performed on an NLR 7301 airfoil with an oscillating trailing-edge flap. The flap comprises 25% of the chord (e=0.5), and the amplitude of the oscillation is about 1 deg, with a mean angle of attack of 0 deg. The results are presented as real (in-phase) and imaginary (in-quadrature) parts, which are normalized by the flap amplitude. Despite the high subsonic Mach number of the flow, the agreement of the present theory with the measurements is excellent. Note that the unusually high flap reduced frequency of 0.45 obtained in the experiment provides an excellent check on the noncirculatory part of the present theory.

To evaluate the theory using direct time integration, the state equations given previously were integrated with respect to time using a standard ordinary differential equation solver. For these particular calculations, the integration was performed using the solver DE/STEP given in Ref. 32, which is a general purpose Adams-Bashforth ODE solver with variable step size and variable order. Typical results for the incompressible case are shown in Fig. 8, both vs time and flap angle. Again, for all calculations the trailing-edge flap comprises 25% of chord, i.e., e=0.5.

When plotted vs time, the lift is sinusoidal of a somewhat lower amplitude and either leads or lags the flap forcing depending on the magnitude of the reduced frequency. When plotted vs flap angle, the lift exhibits a characteristic elliptical loop, similar to that obtained on an airfoil oscillating in angle of attack. As the frequency increases, the slope of the major axis of the loop becomes less, corresponding to the reduction in lift amplitude shown previously in Fig. 6. Note that the loop is circumvented in a counterclockwise direction at low reduced frequencies, and develops into a clockwise loop (phase lead) at higher frequencies as the noncirculatory terms begin to dominate. Qualitatively (but not quantitatively) similar results are obtained at all Mach numbers.

As an application that exercises the full range of the unsteady aerodynamic model, including the trailing-edge flap, consider a transient type problem such as an airfoil-vortex interaction. On a helicopter rotor there are a large number

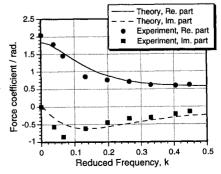
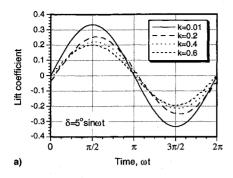


Fig. 7 Frequency response due to a harmonic flap oscillation compared to measurements for NLR 7301 airfoil, $M=0.745,\,e=0.5.$



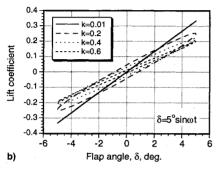


Fig. 8 Unsteady lift for a harmonic flap oscillation in incompressible flow: a) vs time and b) vs flap angle.

of vortical disturbances that lie in proximity to the blades. This is especially the case for the advancing side of the rotor when the helicopter is descending, where the blades may repeatedly encounter a number of close and almost parallel interactions with wake vortices. Blade vortex interaction (BVI) is a highly unsteady phenomenon, and is a significant source of higher harmonic rotor airloads, as well as obtrusive noise. Recent civil and military noise requirements have dictated a significant reduction in BVI noise. This objective is difficult to achieve by any means, but it may be possible by the use of active trailing-edge flaps to either help modify the unsteady loads during BVI by means of appropriate flap deflection^{33,34} and/or by using the flap to locally change the rotor flapping response, thereby increasing the vortex miss-distance.

The BVI problem was studied for incompressible flow by Sears³⁵ using the sharp-edge gust entry lift function (Küssner function) along with Duhamel superposition. For subsonic compressible flow there have been many significant theoretical contributions to the BVI problem, e.g., Refs. 36 and 37, and the references contained therein. However, since transonic effects are often present, there has been considerably more progress in understanding this BVI problem in light of recent developments in CFD.38,39

Consider two simple examples of a BVI encounter, with and without the application of a trailing-edge flap during the encounter. The convecting vortex is of circulation strength $\hat{\Gamma} = \Gamma/cV = 0.2$ and has an irrotational core. The vortex travels at a steady velocity at 0.26 chords below the airfoil. This is a standard case that has received considerable attention in the literature.³⁹ While passing the blade (airfoil) at this predetermined distance, the vortex produces a downwash, while upstream of the airfoil that changes to an upwash as it moves downstream. This situation causes a dynamically changing angle of attack, and so rapidly changing aerodynamic loads are produced on the airfoil.

The downwash variation induced by the passing vortex was used in conjunction with the aerodynamic state equations to solve for the unsteady lift. Figure 9 shows results for the reference case, which essentially demonstrate the effects of compressibility on this problem. Results from an Euler code calculation are also shown, which help to validate the more approximate solution used here. Note that compressibility effects produce an attenuation in the peak-to-peak values of

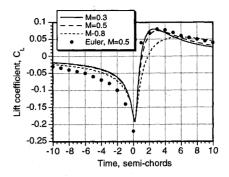
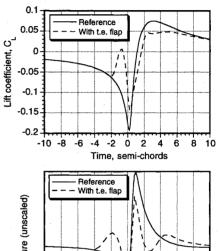


Fig. 9 Unsteady lift produced by a BVI at various Mach numbers.



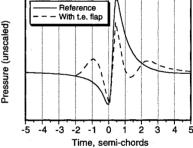


Fig. 10 Unsteady lift and noise produced by BVI with and without unsteady flap deflection at M = 0.5.

the lift. This is despite a higher overall lift curve slope at the higher Mach numbers, which based on incompressible (but unsteady) assumptions will always produce a higher overall peak-to-peak lift. It is significant that when compressibility effects are properly introduced through the form of the indicial (gust) function [Eq. (24)], the opposite effect is obtained, and the peak-to-peak lift during the interaction is reduced. This is mainly because in subsonic compressible flow the unsteady airloads take much longer to readjust to the rapidly changing effective angle of attack induced by the vortex. Similar results of the effects of compressibility for this type of BVI problem are shown in the work of Adamczyk. 40

Figure 10 shows results for the unsteady lift and corresponding acoustic pressure obtained during a BVI encounter, but with the rapid application of a trailing-edge flap during the interaction process. On a helicopter rotor, the acoustic pressure (or noise) propagated to an observer from such a blade-vortex encounter is related (in the compact source limit) to the time rate-of-change of the aerodynamic lift. The farfield acoustic pressure is immediately available in the present form of solution since the time derivatives of the aerodynamic states are already computed by the solver. Note that the acoustic pressure in Fig. 10 is unscaled since the distance or path of a reference point in the far field is not specified.

For simplicity, a prescribed flap displacement is considered in the form of a doublet with a displacement amplitude of 2.5 deg, applied over a period of five semichords of airfoil travel. In practice, the actual flap displacement will be controlled by a closed-loop feedback system. The general objective is to use the flap displacement to alter the time rate-of-change of

the aerodynamic loads, and therefore reduce/modify the acoustic signature due to the BVI phenomenon. It is unnecessary (or even undesirable) to completely destroy the lift during this process, since on a rotor this may adversely alter the blade loads and rotor flapping response over other parts of the rotor disk. It should also be remembered that the motion of the flap introduces its own unsteady lift response due to flap displacements and rate terms, and so the incremental change in lift produced by the flap relative to the reference case does not necessarily mimic the doublet input either in amplitude or in phase. Nevertheless, it can be seen from Fig. 10 that there is an overall reduction in the peakto-peak lift through the application of the flap.

Figure 10 also shows that the influence of the vortex affects the lift relatively far upstream, but the acoustic signature is affected only when the vortex is about two chord lengths upstream and downstream of the airfoil. The transient nature of the pressure spike obtained is essentially one source of helicopter rotor noise that has become well known as "blade slap." It is clear from the example presented that the imposed flap motion certainly helps attenuate the peak-to-peak noise during the interaction, however, in no way should this result be considered optimum. In fact, the abruptness of this phenomenon and the necessity of modifying the time rate-ofchange of the airloads (as opposed to the airloads directly) poses several unique problems in the design of a feedback controller for active noise reduction on rotors due to trailingedge flap deflections.

Concluding Remarks

This article has addressed the development of a practical method of computing the unsteady lift due to arbitrary flap deflection in a subsonic compressible flow. The motivation has partly stemmed from a requirement to compute unsteady loads and acoustics within the confines of a comprehensive rotor analysis due to the active deflection of part-span trailingedge flaps. In the present article, exact solutions for indicial flap displacement and flap rate were obtained for small values of time from the indicial airfoil case in conjunction with aerodynamic reciprocal relations. The results were then generalized to later values of time in terms of exponential approximations. These approximations were finally used to obtain state equation for the lift response due to arbitrary flap motions. By an extension of the present approach, the pitching moment can also be derived.

Results have been presented that show the general effects of time-dependent trailing-edge flap motions on the unsteady lift response. For oscillatory flap forcing, the unsteady lift lags the flap motion at low flap reduced frequencies and begins to lead the flap forcing at higher frequencies. The effects of Mach number on the aerodynamic response were shown to be significant, and essentially manifest themselves as larger aerodynamic lags at higher Mach numbers. The differences between classical incompressible theory and compressible theory were sufficiently large to render the classical theory insufficient for the combination of Mach numbers and reduced frequencies likely to be found on rotor blades with actively controlled trailing-edge flaps. Finally, an application of the method to a simulated blade-vortex encounter was made. It was shown that the unsteady lift and sound pressure produced by such interactions could be altered beneficially by the application of appropriate flap displacements during the encounter. However, bearing in mind the three-dimensional complexity of the BVI phenomenon in an actual rotor environment, the active control of rotor loads and/or noise by means of trailing-edge flaps must remain the subject of further investigation.

Acknowledgments

This work was partially supported by the U.S. Army Research Office under Contract DAAL03-92-G-0121, "Smart Structures Technology: Innovations & Applications to Rotorcraft Systems," Garry Anderson was the technical monitor.

References

¹Edwards, J. W., "Flight Test Results of an Active Flutter Suppression System," Journal of Aircraft, Vol. 20, No. 3, 1983, pp. 267-

²Boulet, J., "History of the Helicopter," *Editions France-Empire*, Paris, 1984.

³Millott, T. A., and Friedmann, P. P., "Vibration Reduction in Helicopter Rotors Using an Active Control Surface Located on the Proceedings of the AIAA/ASME/ASCE/AHS/ASC Structures, Stuctural Dynamics and Materials Conference (Dallas, TX), AIAA, Washington, DC, 1992, pp. 1975-1988 (AIAA Paper 92-

⁴Chen, P. C., Samak, D. K., and Chopra, I., "Development of an Intelligent Rotor," Proceedings of the 4th Workshop on Dynamics and Aeroelasticity Modelling of Rotorcraft Systems, College Park, MD, Nov. 1991.

⁵Van Der Wall, B., and Leishman, J. G., "The Influence of Variable Flow Velocity on Unsteady Airfoil Behavior," Proceedings of the 18th European Rotorcraft Forum (Avignon, France), Sept. 1992 (Paper 81).

⁶Küssner, H. G., and Schwartz, L., "The Oscillating Wing with Aerodynamically Balanced Elevator," NACA TM 991, 1941.

⁷Theodorsen, T., "General Theory of Aerodynamic Instability and

the Mechanism of Flutter," NACA Rept. 496, 1935.

*Theodorsen, T., and Garrick, I. E., "Nonstationary Flow About a Wing-Aileron-Tab Combination, Including Aerodynamic Balance," NACA Rept. 736, 1942.

Von Karman, T., and Sears, W. R., "Airfoil Theory for Non-Uniform Motion," Journal of the Aeronautical Sciences, Vol. 5, No. 10, 1938, pp. 379-390.

OSears, W. R., "Operational Methods in the Theory of Airfoils

in Nonuniform Motion," Journal of the Franklin Institute, Vol. 230, July 1940, pp. 95-111.

Bisplinghoff, R. L., Ashley, H., and Halfman, R. L., Aeroelasticity, Addison-Wesley, Reading, MA, 1955, pp. 281-293.

¹²Jones, R. T., "The Unsteady Lift of a Wing of Finite Aspect Ratio," NACA Rept. 681, 1940.

¹³Jones, W. P., "Aerodynamic Forces on Wings in Non-Uniform Motion," British Aeronautical Research Council, R&M 2117, 1945.

¹⁴Peterson, L. D., and Crowley, E. F., "Improved Exponential Time Series Approximation of Unsteady Aerodynamic Operators," Journal of Aircraft, Vol. 25, No. 2, 1988, pp. 121-127.

Seversman, W., and Tewari, A., "Modified Exponential Series

Approximation for the Theodorsen Function," Journal of Aircraft, Vol. 28, No. 9, 1991, pp. 553-557.

¹⁶Edwards, J. W., Ashley, H., and Breakwell, J. V., "Unsteady Aerodynamic Modeling for Arbitrary Motions," AIAA Journal, Vol. 17, No. 4, 1979, pp. 365-374.

¹⁷Turner, M. J., and Rabinowitz, S., "Aerodynamic Coefficients for an Oscillating Airfoil with Hinged Flap, with Tables for a Mach

Number of 0.7," NACA TN 2213, 1950.

18Beddoes, T. S., "Practical Computation of Unsteady Lift," Proceedings of the 7th European Rotorcraft Forum, Sept. 1982; also Vertica, Vol. 8, No. 1, 1984, pp. 55-71.

¹⁹Leishman, J. G., "Validation of Approximate Indicial Aerodynamic Functions for Two-Dimensional Flow," Journal of Aircraft, Vol. 25, No. 10, 1988, pp. 914-922.

²⁰Mazelsky, B., "Numerical Determination of Indicial Lift of a Two-Dimensional Sinking Airfoil at Subsonic Mach Numbers from Oscillatory Lift Coefficients with Calculations for Mach Number of 0.7," NACA TN 2562, 1951.

²¹Mazelsky, B., "Determination of Indicial Lift and Moment of a Two-Dimensional Pitching Airfoil at Subsonic Mach Numbers from Oscillatory Coefficients with Numerical Calculations for a Mach Number of 0.7," NACA TN 2613, Feb. 1952.

²²Drishler, J. A., "Calculation and Compilation of the Unsteady Lift Functions for a Rigid Wing Subjected to Sinusoidal Gusts and to Sinking Oscillations," NACA TN 3748, Oct. 1956.

²³Leishman, J. G., "Indicial Lift Approximations for Two-Dimensional Subsonic Flow as Obtained from Oscillatory Measurements," Journal of Aircraft, Vol. 30, No. 3, 1993, pp. 340-351.

²⁴Mazelsky, B., and Drischler, J. A., "Numerical Determination

of Indicial Lift and Moment Functions of a Two-Dimensional Sinking and Pitching Airfoil at Mach Numbers 0.5 and 0.6," NACA TN 2739, 1952.

²⁵Mazelsky, B., "On the Noncirculatory Flow About a Two-Dimensional Airfoil at Subsonic Speeds," Journal of the Aeronautical

Sciences, Vol. 19, No. 12, 1952, pp. 848, 849.

²⁶Lomax, H., Heaslet, M. A., Fuller, F. B., and Sluder, L., "Two and Three Dimensional Unsteady Lift Problems in High Speed Flight," NACA Rept. 1077, 1952.

²⁷Lomax, H., "Indicial Aerodynamics," AGARD Manual of

Aeroelasticity, Pt. II, Chap. 6, Nov. 1960.

²⁸Flax, A. H., "Reverse-Flow and Variational Theorems for Lifting Surfaces in Nonstationary Compressible Flow," Journal of the Aeronautical Sciences, Vol. 20, No. 2, 1952, pp. 120-126.

29Heaslet, M. A., and Spreiter, J. R., "Reciprocity Relations in

Aerodynamics," NACA Rept. 1119, 1953.

30 Leishman, J. G., and Nugyen, K. Q., "A State-Space Representation of Unsteady Aerodynamic Behavior," AIAA Journal, Vol. 28, No. 5, 1990, pp. 836-845.

³¹Zwaan, R. J., "NLR 7301 Supercritical Airfoil—Oscillatory Pitching and Oscillating Flap," AGARD R-702, A Compendium of

Unsteady Aerodynamic Measurements, edited by N. C. Lambourne. 32 Shampine, L. F., and Gordon, M. K., Computer Solution of Ordinary Differential Equations-The Initial Value Problem, W. H. Freeman and Co., San Francisco, CA, 1975.

33McCroskey, W. J., "The Effects of Gusts on the Fluctuating

Airloads of Airfoils in Transonic Flow," Journal of Aircraft, Vol. 22, No. 3, 1985, pp. 236-243.

³⁴Hassan, A. A., Sankar, L. N., and Tadghighi, H., "Effects of Leading and Trailing-Edge Flaps on the Aerodynamics of Airfoil Vortex Interactions." Proceedings of the AHS Specialists Meeting on Rotorcraft Basic Research (Atlanta, GA), American Helicopter Society, Washington, DC, March 1991.

35Sears, W. R., "Aerodynamics, Noise and the Sonic Boom," AIAA

Journal, Vol. 7, No. 4, 1969, pp. 577-586.

³⁶Widnal, S., "Helicopter Noise Due to Blade Vortex Interaction," Journal of the Acoustical Society of America, Vol. 50, No. 1, Pt. 2, 1971, pp. 345-365.

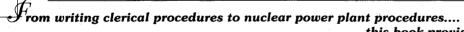
³⁷Amiet, R. K., "Airfoil Gust Response and the Sound Produced by Airfoil-Vortex Interaction," Journal of Sound and Vibration, Vol.

107, No. 3, 1986, pp. 487-506.

³⁸McCroskey, W. J., and Goorjian, P. M., "Interactions of Airfoils with Gusts and Concentrated Vortices in Unsteady Transonic Flow," AIAA Paper 83-1691, July 1983.

³⁹Srinivasan, G. R., and McCroskey, W. J., "Numerical Simulations of Unsteady Airfoil Interactions," Vertica, Vol. 11, Nos. 1/2, 1987, pp. 3-28.

⁴⁰Adamczyk, J. J., "Passage of a Swept Airfoil Through an Oblique Gust," Journal of Aircraft, Vol. 11, No. 5, 1974, pp. 281-287.



this book provides step-by-step help!

Procedure Writing Principles and Practices

Douglas Wieringa, Christopher Moore, and Valerie Barnes

Procedures are instructions, and this book explains how to write instructions so that others can understand them. Procedures can range from simple to complex: they describe anything

from booting up a personal computer to operating a nuclear power plant during an emergency. Plans, mission statements, proposals, and technical articles are not procedures, although

parts of these documents may be considered procedures if they present instructions. No matter how simple or complex the procedure is, certain principles govern the way it should be written. The authors draw on their more than ten years of experience and present their principles in this book.

1993, 211 pages, Paperback ISBN 0-935470-68-9, \$29.95, Order #: PPP-1(945)

Place your order today! Call 1-800/682-AIAA

American Institute of Aeronautics and Astronautics

Publications Customer Service, 9 Jay Gould Ct., P.O. Box 753, Waldorf, MD 20604 FAX 301/843-0159 Phone 1-800/682-2422 9 a.m. - 5 p.m. Eastern

Sales Tax: CA residents, 8.25%; DC, 6%. For shipping and handling add \$4.75 for 1-4 books (call for rates for higher quantities). Orders under \$100.00 must be prepaid. Foreign orders must be prepaid and include a \$20.00 postal surcharge. Please allow 4 weeks for delivery. Prices are subject to change without notice. Returns will be accepted within 30 days. Non-U.S. residents are responsible for payment of any taxes required by their government.